Universality of the optimal path in the strong disorder limit

Buldyrev, Sergey, Havlin, Shlomo, López, Eduardo and Stanley, Eugene (2004) Universality of the optimal path in the strong disorder limit. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 70 (3).


We study numerically the optimal paths in two and three dimensions on various disordered lattices in the limit of strong disorder. We find that the length l of the optimal path scales with geometric distance r , as l approximately r (d(opt) with d(opt) =1.22+/-0.01 for d=2 and 1.44+/-0.02 for d=3 , independent of whether the optimization is on a path of weighted bonds or sites, and independent of the lattice or its coordination number. Our finding suggests that the exponent d(opt) is universal, depending only on the dimension of the system.

Item Type: Article
Keywords: Universality; Optimization
Subject(s): Complexity
Centre: CABDyN Complexity Centre
Date Deposited: 27 Feb 2012 20:38
Last Modified: 23 Oct 2015 14:06
URI: http://eureka.sbs.ox.ac.uk/id/eprint/2297

Actions (login required)

Edit View Edit View