The Eureka Repository is closing down and will not be available after the end of 2020. All publications from current Faculty have now been migrated to Symplectic Elements. See the Sainsbury Library Blog for more information. ×

Effects of epidemic threshold definition on disease spread statistics

Lagorio, Christine, Migueles, M, Braunstein, Lidia, López, Eduardo and Macri, Pablo (2009) Effects of epidemic threshold definition on disease spread statistics. Physica A: Statistical Mechanics and its Applications, 388 (5). p. 755.


We study the statistical properties of SIR epidemics in random networks, when an epidemic is defined as only those SIR propagations that reach or exceed a minimum size sc. Using percolation theory to calculate the average fractional size View the MathML source of an epidemic, we find that the strength of the spanning link percolation cluster P∞ is an upper bound to View the MathML source. For small values of sc, P∞ is no longer a good approximation, and the average fractional size has to be computed directly. We find that the choice of sc is generally (but not always) guided by the network structure and the value of T of the disease in question. If the goal is to always obtain P∞ as the average epidemic size, one should choose sc to be the typical size of the largest percolation cluster at the critical percolation threshold for the transmissibility. We also study Q, the probability that an SIR propagation reaches the epidemic mass sc, and find that it is well characterized by percolation theory. We apply our results to real networks (DIMES and Tracerouter) to measure the consequences of the choice sc on predictions of average outcome sizes of computer failure epidemics.

Item Type: Article
Keywords: disease spread statistics; epidemic threshold;percolation theory; MathML source; View source
Subject(s): Complexity
Science & technology management
Centre: CABDyN Complexity Centre
Related URLs:
Date Deposited: 16 Jun 2010 09:28
Last Modified: 21 Sep 2016 13:39

Actions (login required)

Edit View Edit View