Multi-group Support Vector Machines with measurement costs: a biobjective approach

Carrizosa, Emilio, Martin-Barragan, Belen and Romero-Morales, Dolores (2008) Multi-group Support Vector Machines with measurement costs: a biobjective approach. Discrete Applied Mathematics, 156 (6). pp. 950-966.

[img] PDF - Draft Version
Download (213kB)


Support Vector Machine has shown to have good performance in many practical classification settings. In this paper we propose, for multi-group classification, a biobjective optimization model in which we consider not only the generalization ability (modeled through the margin maximization), but also costs associated with the features. This cost is not limited to an economical payment, but can also refer to risk, computational effort, space requirements, etc. We introduce a Biobjective Mixed Integer Problem, for which Pareto optimal solutions are obtained. Those Pareto optimal solutions correspond to different classification rules, among which the user would choose the one yielding the most appropriate compromise between the cost and the expected misclassification rate.

Item Type: Article
Keywords: Multi-group classification; Pareto optimality; Biobjective Mixed Integer Programming; Feature cost; Support Vector Machines; management science
Subject(s): Management science
Date Deposited: 27 Aug 2010 10:57
Last Modified: 09 Mar 2017 16:24
Funders: N/A

View statistics

Actions (login required)

Edit View Edit View