
INFORMS Journal on Computing
Vol. 19, No. 1, Winter 2007, pp. 14–26
issn 1091-9856 �eissn 1526-5528 �07 �1901 �0014

informs ®

doi 10.1287/ijoc.1050.0151
©2007 INFORMS

A Heuristic Approach to the Multi-Period
Single-Sourcing Problem with Production and

Inventory Capacities and Perishability Constraints
Ravindra K. Ahuja

Department of Industrial and Systems Engineering, University of Florida, P.O. Box 116595,
Gainesville, Florida 32611-6595, USA, ahuja@ufl.edu

Wei Huang
Innovative Scheduling, Gainesville Technology Enterprise Center (GTEC), 2153 Hawthorne Road Suite 128,

Gainesville, Florida 32641, USA, huang@innovativescheduling.com

H. Edwin Romeijn
Department of Industrial and Systems Engineering, University of Florida, P.O. Box 116595,

Gainesville, Florida 32611-6595, USA, romeijn@ise.ufl.edu

Dolores Romero Morales
Saïd Business School, University of Oxford, Park End Street, Oxford OX1 1HP, United Kingdom,

Dolores.Romero-Morales@sbs.ox.ac.uk

The multi-period single-sourcing problem that we address in this paper can be used as a tool for evaluating
logistics network designs in a dynamic environment. We consider the assignment of retailers to facilities,

taking into account the timing, location, and size of production and inventories, in the presence of various types
of constraints. We formulate the problem as a nonlinear assignment problem, and develop efficient algorithms
for solving the capacitated lot-sizing subproblems that form the objective function of this formulation. We
propose a greedy heuristic, and prove that this heuristic is asymptotically optimal in a probabilistic sense when
retailer demands share a common seasonality pattern. In addition, we develop an efficient implementation of
the very-large-scale-neighborhood-search method that can be used to improve the greedy solution. We perform
extensive tests on a set of randomly generated problem instances, and conclude that our approach produces
very high quality solutions in limited time.

Key words : production and inventory planning; capacity constraints; heuristics
History : Accepted by Michel Gendreau, Area Editor for Heuristic Search and Learning; received April 2003;
revised November 2004, March 2005; accepted April 2005.

1. Introduction
The tendency to move towards global supply chains
and the shortening of the product life cycle cause
companies to consider redesigning their logistics dis-
tribution network. Most quantitative models for the
strategic problem of evaluating the layout of a logis-
tics distribution network (usually with respect to
costs) assume a static environment. Examples are
Geoffrion and Graves (1974), Benders et al. (1986), and
Fleischmann (1993). Duran (1987) studies a dynamic
model for the planning of production, bottling, and
distribution of beer, but focuses on the produc-
tion process, and Muriel and Simchi-Levi (2004) and
Muriel (1997) study a dynamic, but uncapacitated,
distribution problem in an operational setting.
Unfortunately, the adequacy of those models is lim-

ited to situations where, in particular, the demand
pattern is stationary over time. In addition, inven-
tory decisions cannot be supported using stationary

models. In this paper we study the multi-period sin-
gle-sourcing problem (MPSSP), a model that was
introduced as a tool for evaluating logistics distri-
bution network designs with respect to costs in a
dynamic environment. We consider a logistics distri-
bution network consisting of facilities and retailers.
Production and storage take place at the facilities, and
the retailers’ demand patterns for a single product
are assumed to be known. This model is suitable for
tactical and strategic purposes, in particular when
we assume that the planning period is a typical
future one, and will repeat itself over time. This
means that the model is cyclic in nature. Our model
could also be modified to apply to shorter-term, oper-
ational or tactical, purposes by assuming a fixed
starting and ending period with corresponding ini-
tial and target inventory levels, yielding an acyclic
model. We assume that there is no transportation
between the facilities. In addition, we do not allow for
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inventories at the retailers. This situation is typical in,
for instance, the food and beverage industry, where
the retailers often are supermarkets and restaurants,
which usually have very limited storage capacity.
The decisions that need to be made are (i) the

assignment of retailers to facilities, (ii) the timing of
production, and (iii) the location and size of inven-
tories. Previous research has focused on variants of
the MPSSP in which each facility has finite, and
possibly time-varying, production capacities (Romeijn
and Romero Morales 2001, 2003, 2004). However, in
contrast to earlier models, in this paper we consider
situations in which several additional types of capac-
ity limitations are present (Romero Morales 2000).
To account for the fact that warehouse capacities are
limited, we include physical inventory capacity con-
straints. Throughput capacity constraints are included
to account for situations in which operational con-
straints limit the amount of products that can flow
through a facility in a particular period. Finally, many
goods are perishable, either due to a physically lim-
ited lifetime, or due to fashion considerations. To
account for this, we allow for a constraint on the num-
ber of periods that a good is stored at a facility before
being transported to the retailer.
Service considerations often dictate that retailers are

delivered by a single facility, leading to a model with
a natural assignment structure. This structure has the
added modeling advantage that the transportation
cost functions may be arbitrary functions of demand
and distance, which significantly increases the appli-
cability of the model. We assume that the produc-
tion and inventory costs are linear, and do not exhibit
speculative motives.
Since even the problem of determining whether

there exists a feasible solution to the basic MPSSP
with production capacities only is NP-complete (Mar-
tello and Toth 1990, Romero Morales et al. 1999), it
is unlikely that efficient methods exist that can solve
large problem instances to optimality. Therefore, we
focus on heuristic approaches to this problem. In par-
ticular, we
• formulate the generalization of the MPSSP as an

assignment problem with a nonlinear objective func-
tion;
• develop efficient algorithms for evaluating this

objective function, which requires the solution of sub-
problems that are capacitated lot-sizing problems that
may also be interesting in their own right;
• provide an explicit characterization of the feasi-

ble region of this problem;
• propose a greedy heuristic solution approach (see,

e.g., Martello and Toth 1981, Romeijn and Romero
Morales 2003, 2004 for related heuristics), as well
as a very-large-scale-neighborhood (VLSN) search
improvement heuristic (see, e.g., Ahuja et al. 2000,
2002);

• propose a stochastic model on the problem data
that allows us to

—prove that our greedy heuristic is asymptot-
ically feasible and optimal in a probabilistic sense
when the number of retailers grows large for the case
where the retailer demands exhibit a common season-
ality pattern;

—develop a model for generating problem in-
stances that are highly capacitated yet likely to be
feasible, and therefore challenging, for our computa-
tional experiments.
The remainder of the paper is organized as follows.

In §2 we formulate the multi-period single-sourcing
problem for the cyclic case as a mixed-integer linear-
programming problem, reformulate the problem as a
pure assignment problem with a nonlinear objective
function, and discuss algorithms for efficiently evalu-
ating the objective function. In §3 we present a greedy
heuristic and describe the VLSN search approach.
The results of extensive computational experiments
are presented in §4. Some concluding remarks and
issues for future research are discussed in §5. Four
appendices can be found in the Online Supplement to
this paper on the journal’s website: Appendix A con-
tains the analysis of a stochastic model for problem
instances and in Appendix B we provide an asymp-
totic average-case analysis of the greedy heuristic
using this model. In Appendix C we discuss the
extension of the results from this paper to the acyclic
case. Finally, in Appendix D we provide the tabulated
results of some of our tests.

2. The Multi-Period Single-Sourcing
Problem

In this section, we first formulate the MPSSP in a tra-
ditional way, as a mixed-integer linear program. Next,
we show that the MPSSP can alternatively be for-
mulated as an assignment problem with an objective
function that is nonlinear and relatively expensive to
evaluate since it involves the solution of a sub-op-
timization problem. We end the section by propos-
ing efficient algorithms for solving these subproblems
and outlining our solution approach to the MPSSP.

2.1. Traditional Formulation
We consider a model to evaluate the performance of a
logistics distribution network that integrates produc-
tion, inventory, and transportation decisions as well
as resource capacities. In particular, let m denote the
number of facilities (which perform both a production
and a storage task), n the number of retailers whose
demands need to be satisfied, and T the length of a
typical future planning cycle that is expected to repeat
itself. Note that this choice generalizes often-used
single-period models, while at the same time allows
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for the modeling of dynamic demand patterns and the
dynamics of inventories. At the same time, our model
does not suffer from the typical start and end-of-study
effect of traditional dynamic models with fixed start-
ing and ending periods. (In Appendix C in the Online
Supplement we describe how our models and algo-
rithms can be modified to apply to such settings as
well.)
The facilities face finite production capacities bit in

each period (i = 1� � � � �m; t = 1� � � � � T ). The demand
of retailer j in period t for a single product is djt
(j = 1� � � � �n). The production costs are assumed lin-
ear, with the unit production costs at facility i in
period t denoted by pit . The single-sourcing aspect
of the model requires that the demand of a retailer
is satisfied by a single facility only. The total trans-
portation costs for supplying retailer j by facility i
throughout the planning horizon are given by cij ≡∑T

t=1 cijt
djt�, where cijt is an arbitrary transportation
cost function. The unit inventory holding costs at
facility i in period t are given by hit . All parameters
are nonnegative by definition.
The decisions to be made are the assignment of re-

tailers to facilities, as well as the production quantities
and inventory levels at the facilities. To this end, let
xij be 1 if retailer j is assigned to facility i and 0 oth-
erwise. In addition, let yit represent the production
quantity at facility i in period t, and Iit the quantity
in storage at facility i at the end of period t. Hereafter
x ∈ �mn will denote the vector with components xij
and similarly for y, I ∈�mT .
The basic MPSSP is:

minimize
T∑
t=1

m∑
i=1
pityit+

m∑
i=1

n∑
j=1
cijxij+

T∑
t=1

m∑
i=1
hitIit

subject to yit≤bit i=1�����m�t=1�����T (1)
n∑
j=1
djtxij+Iit=yit+Ii�t−1

i=1�����m�t=1�����T (2)
m∑
i=1
xij=1 j=1�����n (3)

Ii0= IiT i=1�����m (4)

xij ∈�0�1� i=1�����m�j=1�����n (5)

yit�Iit≥0 i=1�����m�t=1�����T �
The constraints (1) model the production-capacity
constraints, and (2) model the inventory-balance con-
straints. Constraints (3) and (5) enforce the single-
sourcing structure, i.e., each retailer is assigned to
exactly one facility. Finally, constraints (4) model the
fact that T represents a typical sequence of periods
that will repeat itself. In other words, in this model
the initial and ending inventory levels are not fixed,

but determined by the model to ensure that the end-
ing inventory level prepares the system for future
demands. We will make the common assumption that
there are no speculative motives in the production
and inventory costs, i.e., pi�t+1� ≤ pit+hit for all i and t,
where �t�≡ 
t− 1�modT + 1. In particular, this means
that, capacities permitting, demand should always be
satisfied by production in recent periods, avoiding
holding inventories as much as possible.
We will allow for various additional types of capac-

ity constraints that often play a role in practice.
(i) Throughput constraints. Operational limitations

often constrain the quantity of goods that can be
handled at a particular facility during a given time
period. Assuming that the finite throughput capacity at
facility i in period t is given by rit , we can model the
corresponding constraints as

n∑
j=1

djtxij ≤ rit i= 1� � � � �m� t = 1� � � � � T � (6)

(ii) Physical inventory constraints. A finite storage
capacity of Īit at facility i in period t can easily be
modeled by including the following constraints:

Iit ≤ Īit i= 1� � � � �m� t = 1� � � � � T � (7)

(iii) Perishability constraints. To account for the per-
ishable nature of goods, we may constrain the number
of periods that a good is stored at a facility. In partic-
ular, denoting the maximum number of periods that
a product can be stored by k, we obtain the following
constraints:

Iit ≤
t+k∑

�=t+1

n∑
j=1

dj���xij i= 1� � � � �m� t = 1� � � � � T (8)

where we assume that k ≤ T − 1 (if not, we should
consider a multiple of the cycle length T for which
this assumption is satisfied). Perishability constraints
have been considered in inventory control, but they
can hardly be found in the literature on integrated
production and distribution planning. A notable
exception is Myers (1997) who proposes a linear-pro-
gramming model to determine the maximum demand
that a company dealing with perishability issues can
accommodate.
We will refer to a specific instance of the MPSSP

(including any desired capacity constraints) as (P),
and denote its linear-programming relaxation by (LP).

2.2. Assignment Formulation
For a given assignment vector x, the MPSSP decom-
poses into a set of m structured minimum-cost net-
work-flow models, one for each facility. This yields
the following reformulation of the MPSSP as an
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assignment problem (see also Romeijn and Romero
Morales 2003, 2004):

(A) minimize
m∑
i=1

n∑
j=1

cijxij +
m∑
i=1
Hi
xi·�

subject to
n∑
j=1

djtxij ≤ rit

i= 1� � � � �m� t = 1� � � � � T (9)
m∑
i=1
xij = 1 j = 1� � � � �n

xij ∈ �0�1� i= 1� � � � �m� j = 1� � � � �n

where Hi
z�, for z ∈�n
+, is the optimal solution value

of the following subproblem:

(Hi) minimize
T∑
t=1

pityt +
T∑
t=1

hitIt

subject to yt ≤ bit t = 1� � � � � T
n∑
j=1

djtzj + It = yt + I�t−1�

t = 1� � � � � T (10)

It ≤min
(
Īit�

t+k∑
�=t+1

n∑
j=1

dj���zj

)

t = 1� � � � � T (11)

IT = I0

yt� It ≥ 0 t = 1� � � � � T �

Clearly, this subproblem may be infeasible for some
z ∈ �n

+, which would yield Hi
z� = �. Alternatively,
we may impose additional constraints on (A) to en-
sure that the corresponding subproblems are feasi-
ble for all feasible assignments x. In addition, it is
of independent interest to characterize the feasible
assignment vectors explicitly. In the remainder of this
section, we derive such feasibility conditions for the
MPSSP.

2.2.1. Subproblem Feasibility Conditions. The
subproblems (Hi) are actually capacitated minimum-
cost network-flow problems. The corresponding
graphs contain a single supply node (denoted by 0),
as well as T demand nodes (denoted by 1� � � � � T ).
Demand node t has demand equal to the total
demand in period t of all retailers assigned to facil-
ity i, i.e.,

∑n
j=1 djtzj , and the supply node has sup-

ply equal to the sum of all demands:
∑T

t=1
∑n

j=1 djtzj .
There are production arcs of the form 
0� t� for all t =
1� � � � � T , with unit costs pit and capacities bit . In addi-
tion, there are inventory arcs of the form 
t� �t+ 1��
for all t = 1� � � � � T , with unit costs hit and capaci-
ties min
Īit�

∑t+k
�=t+1

∑n
j=1 dj���zj �. Figure 1 illustrates the
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Figure 1 Network Flow Formulation, T = 8

graph corresponding to this problem, where the arc
labels denote the capacities (using the notation of The-
orem 2.1), and the arc costs are omitted. The following
theorem uses this reformulation to characterize the set
of vectors z ∈�n

+ for which Hi
z� <� (or, equivalently,
(Hi) is feasible). In the remainder, we will refer to this
set as the domain of Hi.

Theorem 2.1. The domain of the function Hi consists
of all z ∈�n

+ satisfying

T∑
t=1

n∑
j=1

djtzj ≤
T∑
t=1

bit (12)

�+r∑
t=�+k

n∑
j=1

dj�t�zj ≤
�+r∑
t=�

bi�t�

� = 1� � � � � T � r = k� � � � � T − 2 (13)
�+r∑
t=�

n∑
j=1

dj�t�zj ≤
�+r∑
t=�

bi�t�+ Īi��−1�

� = 1� � � � � T � r = 0� � � � � T − 2� (14)

Proof. For convenience, we will define

�t =
n∑
j=1

djtzj t = 1� � � � � T

�t =min
(
Īit�

t+k∑
�=t+1

n∑
j=1

dj���zj

)
t = 1� � � � � T �

Theorem 6.12 in Ahuja et al. (1993) gives a general
necessary and sufficient condition for feasibility of
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capacitated network-flow problems. For our problem,
these conditions reduce to:∑

t∈S
�t ≤

∑
t∈S
bit +

∑
t� t �∈S� �t+1�∈S

�t

for all S ⊆ �1� � � � � T � (15)

−∑
t∈S

�t ≤
∑

t� t∈S� �t+1��∈S
�t for all S ⊆ �1� � � � � T �� (16)

It is clear that (16) is redundant. With respect to (15),
note that any set S can be written as the union of
disjoint sets, each of which contains consecutive inte-
gers (while observing the cyclic nature of the peri-
ods, i.e., period 1 follows T so that, for example,
�T −1�T �1�2�3� is a set of consecutive integers). Con-
straints (15) corresponding to subset S are in fact the
summation of the constraints corresponding to each
of the sets in the union, and are thus implied by
the latter constraints. Therefore, we can restrict our-
selves to subsets S containing consecutive integers.
This means that (Hi) is feasible if and only if

T∑
t=1

�t ≤
T∑
t=1

bit

�+r∑
t=�

��t� ≤
�+r∑
t=�
bi�t�+���−1� �=1�����T � r=0�����T −2�

Returning to the original notation, the first condition
corresponds to (12). The second set of conditions yield

�+r∑
t=�

n∑
j=1

dj�t�zj ≤
�+r∑
t=�

bi�t�+min
(
Īi��−1��

�+k−1∑
t=�

n∑
j=1

dj�t�zj

)

� = 1� � � � � T � r = 0� � � � � T − 2
which is equivalent to the pair of conditions

�+r∑
t=�

n∑
j=1

dj�t�zj ≤
�+r∑
t=�

bi�t�+ Īi��−1�

� = 1� � � � � T � r = 0� � � � � T − 2 (17)

�+r∑
t=�

n∑
j=1

dj�t�zj ≤
�+r∑
t=�

bi�t�+
�+k−1∑
t=�

n∑
j=1

dj�t�zj

� = 1� � � � � T � r = 0� � � � � T − 2� (18)

Now note that conditions (17) are precisely condi-
tions (14). For � = 1� � � � � T and r = k� � � � � T −2 condi-
tion (18) can be rewritten as

�+r∑
t=�+k

n∑
j=1

dj�t�zj ≤
�+r∑
t=�

bi�t�

while for r < k it can easily be seen to be redundant,
which thus yields conditions (13). This completes the
proof. �

2.2.2. Seasonal Demands. Since T denotes a typi-
cal sequence of demand periods that will repeat itself
in the future, it will often correspond to the length
of a typical demand cycle. It may then be reasonable
to assume that retailers share a common seasonality
pattern, i.e., dj is the total demand of retailer j over T
periods and djt =  tdj for a fixed vector of seasonal-
ity factors  , such that  t ≥ 0 for all t = 1� � � � � T , and∑T

t=1  t = 1.
In this case, the throughput capacity constraints (9)

reduce to
n∑
j=1

 tdjzj ≤ rit i= 1� � � � �m� t = 1� � � � � T

or
n∑
j=1

djzj ≤
rit
 t

i= 1� � � � �m� t = 1� � � � � T

where z ∈�n
+ is the vector of assignment variables for

a given facility i. Similarly, the constraints (12)–(14)
reduce to

n∑
j=1

djzj ≤
T∑
t=1

bit

n∑
j=1

djzj ≤
∑�+r

t=� bi�t�∑�+r
t=�+k  �t�

� = 1� � � � � T � r = k� � � � � T − 2

n∑
j=1
djzj≤

∑�+r
t=� bi�t�+ Īi��−1�∑�+r

t=�  �t�
�=1�����T � r=0�����T −2�

We can thus summarize all capacity constraints by

n∑
j=1

djzj ≤ Bi i= 1� � � � �m (19)

where

Bi =min

{
min

t=1�����T

(
rit
 t

)
�

T∑
t=1

bit� min
�=1�����T
r=k�����T−2

(∑�+r
t=� bi�t�∑�+r
t=�  �t�

)
�

min
�=1�����T
r=0�����T−2

(∑�+r
t=� bi�t�+ Īi��−1�∑�+r

t=�  �t�

)}
�

This means that the feasible region of (A) is in fact
the feasible region of a generalized assignment prob-
lem with agent-independent requirements (sometimes
also called the single-sourcing problem, SSP). How-
ever, recall that in the MPSSP the objective function
is nonlinear. In fact, the objective function is con-
vex (Romero Morales 2000), implying that the opti-
mal solution to the MPSSP will in general not be an
extreme point of the feasible region of the SSP, so that
results that are known about the SSP do not necessar-
ily extend to the MPSSP with seasonal demands.
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2.3. Evaluating the Objective Function
In this section we describe how the objective function
of (A) for a given set of assignments, which requires
solving the subproblems (Hi), can be computed effi-
ciently. We will first develop an algorithm that solves
the subproblem in O
T 2� time, and next develop an
O
T � algorithm for the special case without physical
inventory and perishability capacities. Note that these
running times assume that all input data to the prob-
lem are given. If we include the time required to com-
pute the input data, i.e., the aggregate demands of all
retailers assigned to the corresponding facility and,
if applicable, the inventory capacities implied by the
perishability constraints, the running times become
O
T 2+nT � and O
nT �, respectively.
Note that we may apply these algorithms even on

infeasible subproblem instances to determine whether
the instance is feasible. It is interesting that the run-
ning time required for verifying feasibility using this
approach is the same as using the feasibility condi-
tions derived in §2.2.1. Nevertheless, these feasibility
conditions may be of independent interest. In partic-
ular, they are essential in the asymptotic analysis of
the heuristic that we will propose in §3.1, and they
also enable us to construct a suitable data model for
test-problem generation in §4.1.

2.3.1. General Approach. Note that, without loss
of optimality we can assume that mint=1�����T It = 0.
We propose to solve the problems (Hi) by, for each
t = 1� � � � � T , fixing It = 0 and treating period t as the
“last” planning period. The cheapest one among the
corresponding feasible solutions is then the optimal
solution. If none of the T problems has a feasible solu-
tion, (Hi) is infeasible.
Given a period t for which It = 0, we can use a

backward recursion to obtain the best such solution as
follows (where we will assume, without loss of gen-
erality, that this period is T ). By the assumption that
there are no speculative motives in the production
and inventory costs, the optimal solution will avoid
using the inventory arcs as much as possible. There-
fore, we will produce the demand of each demand
node as late as possible, thereby using as little inven-
tory as possible. The optimal candidate inventories, for
now disregarding the inventory capacity constraints,
can then be found recursively as follows:

It =




0 for t = T

max
(
0�

n∑
j=1

dj� t+1zj + It+1− bi� t+1

)
for t = T − 1� � � � �0�

(20)

If all inventory levels satisfy the side constraints (in-
cluding I0 = 0), this solution is feasible and therefore
optimal. On the other hand, if one or more inventory

capacities are violated, the problem does not have a
feasible solution. This follows directly from the fact
that, by construction, the solution given above uses as
little inventory as possible. (Note that the flows on the
arcs of the form 
0� t� are simply equal to

∑n
j=1 djtzj +

It− It−1, which satisfy the capacity constraints by con-
struction.) The running time of this procedure is O
T �,
so that the total time required to solve T problems
and find the best of the corresponding solutions is
O
T 2).

2.3.2. A Special Case. In the absence of physi-
cal inventory and perishability constraints, we can
solve (Hi) more efficiently. For ease of exposition, we
will always consider periods in a cyclic manner, i.e.,
1� � � � � T �1� � � � etc. For example, t = 5� � � � �2 will mean
that t takes on the values 5�6� � � � � T �1�2.
As in Theorem 2.1, define

�t =
n∑
j=1

djtzj t = 1� � � � � T �

Then define the partial sums of residual capacity,
starting at the base period 1, as follows:

#t =
t∑

�=1
b� −

t∑
�=1

�� t = 1� � � � � T �

It is clear that the problem (Hi) is feasible if and only
if #T ≥ 0, i.e., total supply is no smaller than total
demand. The following lemma finds a different base
period, with respect to which all residual capacities
are nonnegative.

Lemma 2.2. Let s ∈ argmint=1�����T #t . Define

#′
t =

t∑
�=s+1

b� −
t∑

�=s+1
�� t = 1� � � � � T �

Then #′
t ≥ 0 for all t = 1� � � � � T .

Proof. It is easy to see that

#′
t =#t +#T −#s ≥ 0 for t = 1� � � � � s

#′
t =#t −#s ≥ 0 for t = s+ 1� � � � � T � �

The following theorem now shows that, without
loss of optimality, we can choose period s as defined
in Lemma 2.2 to be the “last” planning period.

Theorem 2.3. Let s ∈ argmint=1�����T #t . Then, without
loss of optimality, we can assume that Is = 0.

Proof. We will show the result by contradiction.
Let 
y∗� I∗� be an optimal solution to the problem (Hi).
Without loss of optimality, we may assume that there
exists at least one t such that I∗t = 0. Now suppose that
I∗s = %> 0. Let t1 be the last period before period s such
that I∗t1 = 0, and let t2 be the first period after period s
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such that I∗t2 = 0 (it may be that t1 = t2). Since I∗t1 = 0
and I∗s = %, we know that

s∑
t=t1+1

y∗t =
s∑

t=t1+1
�t + %

i.e., the total production in periods t1 + 1� � � � � s
exceeds the total demand in these periods by %. Sim-
ilarly, since I∗t2 = 0, we know that

t2∑
t=s+1

y∗t =
t2∑

t=s+1
�t − %

i.e., the total production in periods s + 1� � � � � t2 falls
short of the total demand in these periods by %.
Now note that, by Lemma 2.2,

t∑
�=s+1

b� ≥
t∑

�=s+1
�� for all t = s+ 1� � � � � t2

i.e., the total production capacity in periods s + 1�
� � � � t is at least equal to the demand in these periods
for all t = s+ 1� � � � � t2.
We can now conclude that we can find another fea-

sible solution by decreasing the aggregate production
in the periods t1+ 1� � � � � s by %, decreasing I∗s to zero,
and increasing the aggregate production in periods
s+ 1� � � � � t2 by %. Since the production and inventory
costs exhibit no speculative motives, the cost of this
modified solution is no worse than the solution we
started with. Thus, we can assume without loss of
optimality that Is = 0. �

Since the value of s in Theorem 2.3 can be com-
puted in O
T � time, and since the optimal solution to
(Hi) given that Is = 0 can be computed in O
T � time,
(Hi) can be solved in O
T � time.

3. A Heuristic Solution Approach
In this section we propose a heuristic approach for
solving the MPSSP with all capacity constraints dis-
cussed in §2.1. The approach consists of two stages.
In the first stage, we use a greedy heuristic to find
an initial (partial) solution to the problem. In order
to improve the quality of the solution found by the
greedy heuristic (i.e., reduce the level of infeasibility
if needed and reducing the costs of an initial feasible
solution if one is found), we use a recently developed
technique called VLSN search.

3.1. Greedy Heuristic
Martello and Toth (1981) proposed a greedy heuristic
for the generalized assignment problem. This greedy
heuristic was improved by Romeijn and Romero
Morales (2000), who also showed that their improve-
ment of the heuristic is asymptotically feasible and
optimal with probability one under a very general

stochastic model for the problem instances. Romeijn
and Romero Morales (2003, 2004) subsequently gen-
eralized this heuristic and the analysis to the basic
MPSSP as well as some extensions thereof. In this
paper we further generalize the greedy heuristic to
the MPSSP with the additional capacity constraints
described above. In addition, we provide an asymp-
totic performance guarantee for particular stochas-
tic models for the problem data (see Appendix B in
the Online Supplement). Using the assignment for-
mulation (A) of the MPSSP, the idea of the heuristic
is to evaluate each possible assignment using some
pseudo-cost function f 
i� j�, which should measure
the actual assignment costs, as well as the cost of
using the limited capacities. For each assignment to
be made, the difference between the second smallest
and the smallest values of f 
i� j� (called the desirabil-
ity of making the cheapest assignment with respect
to the pseudo-cost) is computed, and assignments are
made in decreasing order of this difference. Along the
way the values of the desirabilities are updated to
take into account the fact that the reduction in capaci-
ties caused by earlier assignments makes certain other
assignments infeasible.

Greedy Heuristic
Step 0. Set L= �1� � � � �n� and xG = 0.
Step 1. For all j ∈ L, let

�j = �i� retailer j can feasibly be assigned to

facility i given xG��

If �j = � for some j ∈ L: let L = L\�j� and repeat
Step 1. Otherwise, let

ij ∈ argmin
i∈�j

f 
i� j� for j ∈ L

)j =min
s∈�j
s �=ij

f 
s� j�− f 
ij� j� for j ∈ L�

Step 2. Let ̂ ∈ argmaxj∈L )j , and set
xGi̂ ̂ = 1

L= L\�̂��
Step 3. If L = �: STOP, xG is a (partial) solution

to (A). Otherwise, go to Step 1.

The output of this greedy heuristic is a vector of
assignments xG, which is either a full or a partial solu-
tion of the reformulated problem (A).
For the MPSSP with capacity and perishability

constraints we propose to use a generalization of a
pseudo-cost function that was earlier developed for
the basic version of the MPSSP (Romeijn and Romero
Morales 2001, 2003, 2004). This pseudo-cost function
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is based on a study of the relationship between a
basic optimal solution to (LP) and a corresponding
dual optimal solution. The intuition behind it is that a
measure of the cost of assigning retailer j to facility i
should not only include the actual assignment costs
from cij , but also a measure that reflects the cost of
using resources. In particular, our analysis yields the
following pseudo-cost function:

f 
i� j�= cij +
T∑
t=1

(
+∗
it + ,∗it −

k∑
l=1
.∗
i�t−l�

)
djt

where +∗, ,∗, and .∗ are, respectively, the vectors
of optimal dual multipliers for the inventory-balance
constraints, throughput-capacity constraints, and per-
ishability constraints in (LP) (where we have rewrit-
ten all capacity constraints as “≥” constraints, so that
the multipliers are all nonnegative). These dual multi-
pliers are multiplied by the coefficient djt that appears
in the left-hand side of the constraints, reflecting that
f 
i� j� measures the cost with respect to the assign-
ment variable xij . It is interesting to note that our
pseudo-cost function does not explicitly contain the
dual multipliers according to the production-capacity
and physical-inventory constraints ((1) and (7)). How-
ever, note that the values of these dual multipliers
are still implicitly part of the pseudo-cost through the
dual constraints, which specify a relationship between
all dual multipliers.
In Appendix B in the Online Supplement we pro-

vide a more formal derivation of the pseudo-cost
function given above. In addition, we perform an
average-case analysis of the greedy heuristic with this
pseudo-cost function. In particular, using a stochastic
model that is developed in Appendix A in the Online
Supplement, we show that if the retailer demands
follow a common seasonality pattern our heuristic
yields, with probability one as the number of retailers
increases to infinity, a feasible and optimal solution to
the problem.
Despite this asymptotic-optimality result for the

problem class with seasonal demand patterns, the
greedy heuristic may yield suboptimal solutions—
particularly for instances with general demand pat-
terns and for instances where the number of retailers
is relatively small. In fact, the heuristic may even fail
to find a feasible solution. In order to improve the
quality of the solution found by the greedy heuris-
tic (i.e., reduce the level of infeasibility if needed and
reducing the costs of an initial feasible solution if
one is found), we use a recently developed technique
called VLSN search, which will be described in the
next section.

3.2. Very-Large-Scale-Neighborhood Search
The asymptotic performance guarantee enjoyed by
the greedy heuristic discussed above suggests that
this heuristic will provide good solutions to the

MPSSP, particularly when the number of retailers is
relatively large and when the retailer demands follow
a common seasonality pattern. However, for fewer
retailers, and for other demand patterns, we may
need to enhance the heuristic in order to find good,
or even feasible, solutions to the problem. A com-
mon approach is to use a local search procedure
to enhance the initial solution found by the greedy
heuristic. For example, one may consider a so-called
2-exchange neighborhood, containing all solutions that
can be obtained by interchanging the assignments of
exactly two retailers that are currently assigned to dif-
ferent facilities. In particular, if retailer j1 is assigned
to facility i1, and retailer j2 is assigned to facility i2,
we may check if assigning retailer j2 to facility i1 and
retailer j1 to facility i2 improves the quality of the
solution. If no improvement is found for any of the
possible exchanges of this type, the current solution
is locally optimal.
It is well-known that as larger neighborhoods are

considered in a local search procedure, it may be
expected that higher-quality solutions will be ob-
tained. On the other hand, the computational effort
required to find a locally optimal solution may
increase dramatically with the size of the neighbor-
hood considered. The class of neighborhood-search
techniques called VLSN search is aimed at using
very large neighborhoods, while keeping the com-
putational time required to find a local optimum
limited. VLSN search has been successfully applied
to many partitioning problems such as vehicle rout-
ing problems (Fahrion and Wrede 1990, Thompson
and Psaraftis 1993, Gendreau et al. 2006), minimum-
makespan machine scheduling (Frangioni et al.
2000) and other scheduling problems (Thompson
and Psaraftis 1993), and the capacitated minimum
spanning-tree problem (Ahuja et al. 2001b, 2003). Sur-
veys of VLSN search can be found in Ahuja et al.
(2000, 2002). Since the MPSSP can be viewed as a par-
titioning problem, VLSN search seems ideally suited
for our problem.
The basic idea of VLSN search is to consider ex-

changes that involve more than two retailers and facil-
ities, which we call cyclic and path exchanges. Two
assignments x and x′ are called cyclic neighbors if x′ can
be obtained from x by performing a cyclic exchange,
e.g., by transferring a chain of retailers to different
facilities. For instance, if x assigns retailers jk, k =
1� � � � � �m to distinct facilities ik, k = 1� � � � � �m (where
�m≤m), and x′ assigns retailer j1 to facility i2, retailer j2
to facility i3� � � � � retailer j�m−1 to facility i�m, and finally
retailer j�m to facility i1, x and x′ are cyclic neighbors.
Similarly, x and x′′ are called path neighbors if x′′ is
obtained from x by performing a path exchange, e.g.,
by transferring retailer j1 to facility i2, retailer j2 to
facility i3� � � � � retailer j�m−1 to facility i�m (see Figure 2
for examples).
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Figure 2 Cyclic and Path Exchange

3.2.1. TheImprovementGraph. Thompson(1998),
Thompson and Orlin (1989), Thompson and Psaraftis
(1993), and Ahuja et al. (2001b) show how to find
an improving neighbor in the cyclic exchange neigh-
borhood by finding a subset-disjoint cycle in the so-
called improvement graph. The improvement graph can
be constructed as follows. Given a solution x to the
MPSSP, for each retailer j = 1� � � � �n, let i
j� denote the
facility to which retailer j is assigned. The improve-
ment graph is a directed graph G = 
V �A� with the
node set V = �1� � � � �n�. The arc set A contains all
pairs 
j1� j2� such that j1� j2 ∈ V with the property that
transferring retailer j1 from i
j1� to i
j2� and removing
retailer j2 from i
j2� yields a feasible assignment for
facility i
j2�. The arc costs of this arc are defined as the
change in costs for facility i
j2� due to this transfer, i.e.

A
j1� j2�

= ci
j2�j1 − ci
j2�j2 +Hi
j2�

(
xi
j2�· + ej1 − ej2

)−Hi
j2�

(
xi
j2�·

)
where ej ∈ �n denotes the jth unit vector. A cycle in
G is called subset-disjoint if all nodes in the cycle cor-
respond to retailers that are assigned to distinct facili-
ties in the solution x. Thompson and Orlin (1989) and
Thompson and Psaraftis (1993) show that there is a
one-to-one correspondence between cyclic exchanges
for a partitioning problem like the MPSSP and subset-
disjoint cycles in the improvement graph. This means
that a subset-disjoint cycle with negative cost yields
an improved solution, where the cost of the cycle
gives the change in cost. However, the problem of
determining whether there exists a subset-disjoint
cycle in the improvement graph is NP-complete,
and the problem of finding a negative cost subset-
disjoint cycle is NP-hard (Thompson 1988, Thompson
and Orlin 1989, and Thompson and Psaraftis 1993).
Heuristics that may be effective in practice have been
developed by Ahuja et al. (2001a, b). In this paper,
however, we chose to employ the exact dynamic-
programming (or implicit-enumeration) algorithm

that was developed and discussed in detail in Ahuja
et al. (2003). In particular, this algorithm may be used
to find the optimal negative-cost subset-disjoint cycle
or, at a significant reduction in running time, the best
cycle of a given maximum length. We have chosen
to use the former when the number of facilities in
the MPSSP is relatively small, and switch to the latter
when the number of facilities is larger (see also §4).
To allow for path exchanges also, Ahuja et al.

(2001b) show that a slight modification of the im-
provement graph will provide a one-to-one corre-
spondence between subset-disjoint cycles in the modi-
fied improvement graph and cyclic or path exchanges,
allowing for both types of exchanges using a single
improvement graph.

3.2.2. Subproblems. Besides the problem of find-
ing a negative-cost subset-disjoint cycle in the im-
provement graph, the other important issue is how
to generate and update the improvement graph itself
efficiently. Note that determining whether a candi-
date arc 
j1� j2� is indeed present in the graph, and if
so, what its cost is, involves solving an optimization
subproblem of the type (Hi). In this section we will
discuss the computational burden of solving these
subproblems.
In addition to the running time of the procedure

for solving the subproblems itself, we also need to
compute the input data for the subproblems, i.e., the
demands, which takes O
nT � time when computed
from scratch. However, after finding an improved
neighbor, updating all demands for facility i takes
O
T � time, since at most one retailer leaves the facil-
ity, and at most one retailer enters the facility.
Since the value of s in Theorem 2.3 can be com-

puted in O
T � time, and since the optimal solution to
(Hi) given that Is = 0 can be computed in O
T � time,
(Hi) can be solved in O
T � time. Note that, in the case
with production capacities only, we may check feasi-
bility of the assignments xi· for facility i in O
1� time
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by observing that only the constraint (12) is relevant.
In the presence of other capacities, checking feasibil-
ity directly is computationally more expensive than
applying the O
T � method outlined above.

3.2.3. Initial FeasibleSolution. SinceVLSNsearch
is an improvement heuristic, we need an initial feasi-
ble solution. If the greedy heuristic introduced in §3.1
yields a feasible solution, we will use that solution.
If not, the greedy heuristic does yield a partial solu-
tion. We then complete this solution by assigning all
retailers that are not assigned in the partial solution to
their most desirable facility, disregarding the capacity
constraints. This clearly yields an infeasible solution
to the MPSSP. We then use a first-phase VLSN search
(reminiscent of the phase I simplex method in linear
programming) to convert this infeasible solution into
a feasible solution. In particular, we will disregard
the capacity constraints present in (A), including the
constraints characterizing the domain of Hi. We can
then measure the infeasibility of the problem instance
(Hi) as follows, where z ∈ �0�1�n denotes the vector of
assignments to facility i:

3i
z� =
T∑
t=1
max

{
0�

n∑
j=1

djtzj − rit

}

+ min
�=1�����T

T∑
t=0
max

{
0�I�it−min

(
Īit�

t+k∑
�=t+1

n∑
j=1
dj���zj

)}

where the values of I �it are computed using the recur-
sion (20), treating � as the last period by setting I �i� = 0
and performing the backwards recursion in a cyclic
manner from there. Using this measure of infeasibil-
ity, we then add the term

4
m∑
i=1
3i
xi·�

to the objective function of (A), where 4 is a positive
penalty coefficient.

4. Computational Results
4.1. Generation of Problem Instances
Following the stochastic model described and ana-
lyzed in Appendix A in the Online Supplement, we
tested our solution approach on problem instances
generated as follows (where random variables are
denoted by capital letters). For each problem instance,
we generated a set of facilities and a set of retail-
ers uniformly in the square �0�10� × �0�10�. For the
case where all retailers exhibit the same seasonal-
ity pattern (see §2.2.2), we generated an aggregate
demand Dj from the uniform distribution on �5�25�
for each retailer j , and set Djt =  tDj (t = 1� � � � � T ). For
the more general case, we generated a demand Djt

from the uniform distribution on �5 t�25 t� for each
retailer in each time period. We fixed the number of
time periods to T = 6, and, in most cases, chose the
vector of seasonal factors to be  = 
 19�

3
18�

2
9�

2
9�

3
18�

1
9 �

�.
However, in this case perishability constraints, even
with k = 1 or 2, often turn out to be non-binding.
To obtain more illustrative results, we used a more
extreme (albeit less realistic from a practical point
of view) vector of seasonal coefficients when per-
ishability constraints are present; in particular:  1 =
6T 2/
T 
T + 1�
2T + 1�� and  t = 6
t − 1�2/
T 
T + 1� ·

2T + 1�� (t = 2� � � � � T ).
The costs Cij are assumed to be proportional to

demand and distance, i.e., Cij = distij
∑T

t=1Djt , where
distij denotes the Euclidean distance between facility i
and retailer j . We generated inventory holding costs
hit uniformly in the interval �10�30� and, without
loss of generality due to the absence of speculative
motives, chose the production costs equal to zero.
Finally, we assumed that the capacities are equal

for all facilities and all periods. To allow for sufficient
capacity as the number of retailers grows, we let all
capacities depend linearly on n, i.e., bit = 8n, rit = )n,
and Īit = 9n. Finally, we let

8= : · �
D1�

m
· max

�=1�����T
r=k�����T−1

(
1

r + 1
�+r∑
t=�

 �t�

)

)= :′ · �
D1�

m
· max
t=1�����T

 t

9= :′′ · max
r=0�����T−2

(
�
D1�

m
· max
�=1�����T

�+r∑
t=�

 �t�−8
r + 1�
)
�

Using the analysis in Appendix A in the Online
Supplement it can be shown that, if all retailer de-
mands exhibit the same seasonality pattern, generated
instances are feasible with probability one as the num-
ber of retailers approaches infinity if all and only if
:�:′�:′′ > 1. In the absence of throughput, physical
inventory, and perishability constraints we obtain

8= : · �
D1�

mT
�

Instances generated for this model are then asymptot-
ically feasible with probability one if and only if :> 1,
even in the case of general retailer demand patterns.

4.2. Results
We mainly considered cases with m= 5 facilities, and
n = 15, 25, 50, 100, 150, 200, 250, and 300 retail-
ers. For the production capacities, we mainly used a
multiplier of := 1�1. Recall that :> 1 ensures asymp-
totic feasibility; this value of : thus provides rela-
tively tight (and therefore relatively hard) problem
instances, while still allowing for a reasonable fraction
of feasible instances for small numbers of retailers. For
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Table 1 Basic Case, Seasonal Demands �m= 5�

Greedy heuristic Including VLSN search
CPLEX

Time Error Time Error Time
n Feas. (sec.) (%) Feas. (sec.) (%) Iter. (sec.)

15 19 0.001 10�61 22 0�08 1.69 2.1 3�99
25 16 0.006 16�49 21 0�16 0.95 3.0 30�93
50 21 0.012 8�73 24 0�41 0.89 3.5 12�85

100 25 0.046 3�06 25 1�79 0.37 4.0 26�00
150 25 0.098 2�27 25 5�55 0.21 4.7 115�95
200 25 0.171 1�63 25 10�78 0.15 4.3 329�62�5�

250 25 0.268 1�45 25 22�80 0.12 5.1 280�56�4�

300 25 0.389 1�17 25 34�50 0.08 4.7 325�43�5�

the throughput and physical-inventory constraints,
choosing the tightness parameter too small would
yield instances (and solutions) that are impractical,
since they would allow for too little variety in the
types of feasible solutions. Therefore, for the through-
put constraints, we used :′ = 1�3, and for the physical
inventory constraints we used :′′ = 1�1�1�5. Finally,
we considered perishability constraints with k= 2.
We first attempt to solve all problem instances

using the greedy heuristic, after which VLSN search
with both cyclic and path exchanges is employed to
improve that solution. In case the greedy heuristic
does not find a feasible solution, we use the first-
phase VLSN approach discussed in §3.2.3. We initially
set 4 = 1�000, and multiply it by a factor of ten when
the first-phase VLSN search does not find an improv-
ing or feasible solution. As soon as VLSN search does
find a feasible solution we disregard the penalty term
in the objective function and return to the original
VLSN algorithm, thereby ensuring feasibility for the
remainder of the algorithm. If no feasible solution is
obtained with 4 = 1011, we stop the procedure without
a solution to the problem.
For each class of problem instances we generated

and solved 25 instances. Tables 1–5 report the main
test results (additional results can be found in
Tables 6–8 in the Online Supplement). The tables
show, for both the greedy heuristic and VLSN search,
the number of instances for which the heuristic found
a feasible solution, the computation time, and the
error (averaged over all instances for which a feasi-
ble solution was found). For VLSN search the average
number of iterations, i.e., the number of improving
solutions, is given. VLSN search was able to find a
feasible solution to almost all instances that were in
fact feasible (which we have verified by attempting to
solve these problem instances using the MIP solver of
CPLEX; see ILOG 2001). A superscript on the number
of instances for which VLSN search found a feasible
solution indicates the number of instances that were
feasible, but for which VLSN search was not success-
ful. In most cases, the error shown is an upper bound

Table 2 Throughput Constraints, Seasonal Demands �m= 5� �′ = 1�3�

Greedy heuristic Including VLSN search

Time Error Time Error
n Feas. (sec.) (%) Feas. (sec.) (%) Iter.

15 13 0.005 12�35 16�2� 0�10 1.70 2.4
25 21 0.001 8�74 24 0�15 1.34 2.9
50 22 0.010 6�17 22 0�42 0.89 3.7

100 25 0.048 3�19 25 1�72 0.32 3.9
150 25 0.101 2�27 25 5�32 0.20 4.6
200 25 0.177 1�50 25 12�48 0.12 5.2
250 25 0.275 1�27 25 20�89 0.10 4.9
300 25 0.394 1�08 25 39�23 0.09 5.7

on the actual error, computed using the optimal solu-
tion value of the LP-relaxation. In Table 1, as well as
for n = 15�25 in all other tables, the error was com-
puted using the optimal solution, or the best lower
bound obtained by CPLEX within 15 minutes of CPU
time. Finally, in Table 1 the average solution times
using CPLEX are shown. The upper bound on the
solution time was 15 minutes, and a superscript indi-
cates the number of instances for which this limit was
reached. Note that in all cases where VLSN was able
to find a feasible solution, we provided this solution
to CPLEX to speed up its solution time.
All tests were performed on a PC with a 667 MHz

Pentium III processor with 128 MB RAM. All LP-
problems and MIP problems were solved using
CPLEX 7.0.

4.2.1. Main Results. Tables 1–5 show results using
the parameter choices indicated above. In our experi-
ments, VLSN search was able to find a feasible solu-
tion whenever the problem instance was feasible, so
the corresponding column in the tables actually indi-
cates the number of feasible instances (out of the 25
generated). Only in 4.3% of the instances with n= 15
and 0.3% of the instances with n = 25 was VLSN
search unsuccessful in finding a feasible solution to
the problem.
Most tables clearly illustrate the asymptotic feasibil-

ity and optimality of the greedy heuristic. In Table 3,

Table 3 Physical Inventory Capacities, Seasonal Demands
�m= 5� �′′ = 1�1�

Greedy heuristic Including VLSN search

Time Error Time Error
n Feas. (sec.) (%) Feas. (sec.) (%) Iter.

15 12 0.006 8�51 17�2� 0�11 2.41 2.5
25 9 0.009 12�62 11 0�19 2.79 3.0
50 15 0.033 3�99 18 0�48 1.27 3.5

100 13 0.176 1�70 16 1�76 0.48 3.8
150 20 0.498 1�43 20 4�53 0.21 4.3
200 22 1.056 0�70 23 10�07 0.17 4.5
250 19 1.929 0�70 20 18�13 0.11 4.3
300 16 3.205 0�50 20 31�30 0.08 4.3
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Table 4 Physical Inventory Capacities, Seasonal Demands
�m= 5� �′′ = 1�5�

Greedy heuristic Including VLSN search

Time Error Time Error
n Feas. (sec.) (%) Feas. (sec.) (%) Iter.

15 18 0.003 11�44 20�1� 0�09 2.85 2.3
25 17 0.008 9�77 19 0�14 1.51 2.7
50 21 0.034 5�88 22 0�42 0.89 3.6

100 24 0.178 3�40 24 1�84 0.33 4.2
150 25 0.497 2�17 25 5�37 0.22 4.8
200 25 1.060 1�59 25 12�51 0.12 5.3
250 25 1.929 1�23 25 21�00 0.09 5.1
300 25 3.190 1�06 25 35�73 0.09 5.3

we see significantly fewer feasible instances than for
all other cases. Additional experiments showed that
the asymptotic nature of the feasibility result is more
prominent here, and only for n ≥ 2�000 do we stop
seeing any infeasible instances. However, the ratio
n/m between the number of retailers and facilities
often needs to be quite large to obtain acceptable
solution quality. VLSN search, however, is able to
find good solutions to the problem in little time even
for these apparently harder instances where the ratio
n/m is small. The greedy heuristic and VLSN search
seem to be complementary, in the sense that the prob-
lem instances for which the time required to obtain
a good solution using VLSN search gets large often
allow for a good solution using the greedy heuris-
tic, but in far less time. In comparison, the time
used by CPLEX to solve the problems to optimal-
ity is very problem-dependent, and increases quite
rapidly in the size of the problem. For n= 15, CPLEX
takes, on average, 4 to 230 times as much time as
VLSN search. For n = 25, this increases to 8 to 270.
The time used by CPLEX for problem instances with
n= 15 are anywhere from less than a second to about
half a minute. This indicates that for the smallest
problems, VLSN combined with CPLEX could be a
viable option. Combining these observations, it seems
that VLSN/CPLEX should be used for the smallest

Table 5 Perishability Constraints, Seasonal Demands �m= 5� k = 2�

Greedy heuristic Including VLSN search

Time Error Time Error
n Feas. (sec.) (%) Feas. (sec.) (%) Iter.

15 18 0.003 8.94 22 0�11 0.66 2.6
25 19 0.008 3.72 21�1� 0�18 0.29 3.5
50 21 0.032 2.71 24 0�41 0.44 4.7

100 25 0.194 1.13 25 1�28 0.18 5.2
150 25 0.533 0.77 25 2�98 0.09 5.3
200 25 1.122 0.50 25 5�94 0.06 5.8
250 25 2.033 0.46 25 9�41 0.04 5.2
300 25 3.346 0.37 25 16�14 0.04 6.0

instances, up to n = 15, VLSN search for the larger
instances.
The tables show that the computation times and

solution quality for VLSN search are remarkably
insensitive to the types of capacity constraints present.
This can perhaps be explained by the fact that the fea-
sible region of the MPSSP under seasonal demands
is that of a SSP, regardless of the types of capacity
constraints included. We conclude that the difference
in the structure of the objective function in the dif-
ferent types of problem instances does not have a
significant effect on the performance of the heuris-
tics. As for the computation time involved, the oper-
ation that currently takes the most time is finding the
negative cycle. Generally, around 50% of the time of
VLSN search is spent there. It is interesting to note
that, while only a small number of iterations of VLSN
search is performed in this time, a local optimum that
exhibits a dramatic improvement in solution quality
is obtained.

4.2.2. General Demands in Basic Case and with
Physical Inventory Capacities. Tables 6–8 in the
Online Supplement show results obtained using the
general demand model, for the basic MPSSP as well
as the case with physical inventory capacities. In
the latter case the feasibility condition for general
demands is an open issue, but in the former the fea-
sibility condition for seasonal and general demands
coincide. We therefore decided to test the model
including inventory capacities as well. Apart from
somewhat larger errors and a lower success rate for
instances with a small ratio of the number of retail-
ers to the number of facilities, the similarity of the
results for both demand models shows that the results
in §4.2.1 are quite insensitive to the particular choice
of demand model. The difference for small n is likely
to be caused by apparently tighter capacities in the
case of general demands. These results lead us to
conjecture that the asymptotic performance guarantee
of the greedy heuristic likely extends to the general
demand case.

4.2.3. More Facilities in Basic Case. To study the
impact of the number of facilities m, we tested the
performance of the algorithms for the basic case.
To avoid memory problems in the negative-cycle-
detection procedure of VLSN search, we limited the
cycle length to three retailers. The results in Table 8
in the Online Supplement indicate that, with this set-
ting, the main difference between m = 5 and m = 10
is the error experienced by VLSN search. Recall that
the errors are with respect to the best bound found
by CPLEX within at most 15 minutes for n= 25, and
with respect to the LP bound for all other instances.
For these instances, CPLEX was rarely able to find an
optimal solution even within a 30-minute time limit,
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and the errors are with respect to a probably weak
lower bound. We conclude that problems with a very
small ratio of the number of retailers to the number
of facilities are particularly hard.

5. Summary and Future Research
We have considered the problem of evaluating
a logistics-network design in a dynamic environ-
ment in the presence of production, inventory, and
throughput capacities and perishability constraints.
We have thoroughly analyzed feasibility properties
of various subproblems, leading to stochastic mod-
els that are suitable for generating random problem
instances, as well as efficiently implementable heuris-
tic approaches. In particular, we have proposed a
heuristic approach that enjoys attractive theoretical
properties, and shown that it is very successful at
obtaining high-quality solutions to the problem in
limited time. We are currently investigating exten-
sions of the approach to nonlinear production-cost
structures, as well as cases that allow for invento-
ries at the retailer level. Other interesting directions
for future research would be to extend the models to
allow for shipments between facilities (see Romeijn
and Romero Morales 2002 for some initial results on
such models), as well as the generalization to multiple
products.
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