Semi-obnoxious location models: A global
optimization approach

Dolores Romero-Morales
Rotterdam School of Management, Erasmus University Rotterdam.
P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

Emilio Carrizosa
Eduardo Conde
Facultad de Matematicas, Universidad de Sevilla.
C/ Tarfia, s/n 41012 Sevilla, Spain

21/07/1997

Abstract

In the last decades there has been an increasing interest in environmental
topics. This interest has been reflected in modeling the location of obnox-
ious facilities, as shown by the important number of papers published in this
field. However, a very common drawback of the existing literature is that,
as soon as environmental aspects are taken into account, economical con-
siderations (e.g. transportation costs) are ignored, leading to models with
dubious practical interest. In this paper we take into account both the envi-
ronmental impact and the transportation costs caused by the location of an
obnoxious facility, and propose as solution method of the well-known BSSS,
with a new bounding scheme which exploits the structure of the problem.

Keywords: Location Theory, Global Optimization, Semi-obnoxious facilities,
Big-squares Small-squares

1 Introduction

In the last decades there has been an increasing interest for environmental prob-
lems, mainly due to industrial and technological innovations (most causing envi-
ronmental deterioration), and recent ecological disasters.

This interest has been reflected in the literature of Locational Analysis, as
shown by the significant number of papers devoted to modeling the location of



undesirable facilities, [1, 6, 18, 19], such as nuclear or chemical plants, garbage
dumps, plants for treatment of residual waters, .. ..

These facilities decrease the welfare of neighboring population centers, thus
remoteness is seen by population as a positive attribute, in contrast with the clas-
sical location models, where the facility is desired as close as possible. However,
together with the environmental impact, the location of the facility carries out a
usually important economical cost, due to transportation costs.

Although most models in the literature addressing the location of these facili-
ties simply ignore transportation costs, [7], which is rather extremely unrealistic,
some papers accommodate both aspects.

For instance, in [4, 16] both transportation costs and environmental impact
(considered also as a cost) are assumed to be linear functions of the distances
between the facility and the population centers. In order to obtain more realistic
models, in the review [6] the environmental cost is suggested to be modeled as a
nonincreasing convex function of the distances, whilst the transportation cost can
be better modeled as Lipschitz-continuous nondecreasing function of distances,
[8].

In this paper we follow these suggestions and propose to locate the facility at
the optimal solution of the mathematical programme

inf () = 3 [fallle — al2) + ga(lla — al$)] M

a€A

where

e A C IR? is a nonempty finite set, representing the coordinates of the popu-
lation centers.

e S C IR? is a nonempty closed (possibly unbounded) set, given by a finite
union of polygonal regions, and representing the set of feasible locations
for the facility. We make the standard assumption in Continuous Location
that S\ A # 0.

o | -]|o, || |4 are arbitrary gauges in IR?, associated with the population
center a. For more see [5, 18, 20, 22].

e fo:(0,400) — IR is a nonincreasing convex function measuring the envi-
ronmental impact (cost) on the population center a caused by a facility at
a distance ||z — a||* from a.

Function f, is extended to [0, +00), defining it at 0 as

£a(0) = lim fu(t) € RU{+00}.



® g, :[0,400) — IR is a nondecreasing Lipschitz-continuous function, mea-
suring the transportation costs from the population center a to a facility at
a distance |z — a|%.

It should be mentioned that particular instances of (1) have been previously
addressed in the literature, [10, 18], mainly considering the functions f, and g,
as linear functions, using particular cases of gauges (norms), and not considering
mixed gauges but assuming instead that | - | = || - |9 = - ||, for all a € A.

For instance, in [3] the feasible region is assumed to be given as a finite union
of polytopes and the gauge in use for both factors and any population center is
the euclidean norm; the functions are assumed to be linear, and the problem is
solved by general-purpose techniques developed for d.c. functions, i.e., functions
which can be written as the difference of two convex functions, [13]. They also
consider a nonlinear case, in which f,(t) = wee™!, with w, > 0, leading again
to a d.c. optimization problem, i.e., a problem with d.c. objective function and
constraints given as level sets of d.c. functions.

In [22] a particular instance of (1) is addressed, in which the feasible region
is a convex polygon, and each f, and —g, are nonincreasing convex functions
defined on IR, . The authors show that, under some assumptions, the objective
function is d.c., and solvable by d.c. optimization techniques, [13].

However the most versatile technique proposed so far for semiobnoxious facili-
ties-location problems is a continuous branch-and-bound method, BSSS, proposed
in [7] to solve a particular instance of (1), namely, the case that, for each a € A,
fa is a nonincreasing continuous function and g,(t) = 0, for all ¢ € [0, +00). See
also Section 3.

The remainder of the paper is structured as follows. In Section 2 we address
the problem of existence of an optimal solution for (1), and present some sufficient
conditions. Under such conditions, we propose in section 3 as solution technique
the BSSS algorithm developed in [7, 8] in order to exploit better the structure of
(1). In section 4 some preliminary computational results are presented.

2 Existence of an optimal solution

The model proposed enables the functions f, tending to +o0o when distances tend
to zero, i.e., when the facility is located near a population center. We first show
that such locations are nonoptimal.

It is well-known that any two gauges || - ||1, || - ||2 are equivalent, i.e., there exist
constants C7 > 0, Cy > 0 such that

Cr llzlls < lall2 < Co Jlzfly Vo € IR®. (2)



Hence, there exist strictly positive constants Cy, C_ and Kj, K2 such that for
any z € IR?, a,b € A

24 < Oy =l (3)
lz|2 < O [l]> (4)
Ky flzf|2 < =% (5)
Ky [lz]f < =2 (6)
Let
Ao ={be A : ltifg fo(t) = +o0}. (7)

Theorem 1 There exvists H = Uy a4 B® | B® being an open neighborhood of b,
for all b € Ay, pairwise disjoint, such that

520 = ) i

The proof can be found in the Appendix.

Remark 1 As can be seen in the proof of Theorem 1, without loss of generality,
one can assume that the sets deleted around each point in A, are squares, by
inscribing a square within each B®. With this, the resulting set S\ H can be
written as a finite union of polygonal regions, thus inheriting the geometrical
structure of S.

This is illustrated in Figure 1. In this picture we have

A = {a1,a2,a3,a4,a5,a6,b1,b2,b3}
Ao {b1,b2,b3}.

Around each point in A, we have drawn the corresponding neighborhood, using
the gauge || - ||, with radius equal to to(b;), for i = 1,2, 3. Inside each neighbor-
hood we have inscribed a square Cj, for i = 1,2, 3. Then we can assume the new
feasible region, containing an optimal solution of (1), to be S\ (U3, C;).

In what follows we give some sufficient conditions under which Problem (1) at-
tains its optimal value, i.e., it has an optimal solution.

First, if S is bounded, by Theorem 1, solving (1) amounts to minimizing a con-
tinuous (and finite!) function on a compact set. Hence one has the following

Theorem 2 If the feasible region S is bounded, then Problem (1) has an optimal
solution.
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Figure 1: Erasing squares around points in A,

Although in practice the feasible region will always be bounded, the study
of problems with unbounded domain (e.g. S = IR?) may also be of interest.
The sufficient condition, under which an optimal solution of (1) exists, obtained
in [4] for the unconstrained case is generalized in [2], supposing transportation
cost measured as concave and nondecreasing function of the distance. Roughly
speaking, such condition states that, if transportation costs are big enough (com-
pared with the environmental impacts) for points far away, the optimal value is
attained:

Theorem 3 [2/ Let C_ and K; be positive constants verifying respectively (4)
and (5). If function g, is concave, for all a € A, and

lim Z[fa(C,t) + go(K1t)] = 400,
t+oo acA

then Problem (1) has an optimal solution.

Remark 2 As can be seen in [2], under the assumptions of Theorem 3, one can
always construct a rectangle containing the optimal solution of Problem (1), and
then, as soon as the functions g, are concave, one can assume without loss of
generality that the feasible region is bounded.



3 The BSSS with sharper bounds

According to Remarks 1, 2, one can start with a feasible region consisting of a
finite union of bounded polygonal regions, within which the objective function is
continuous. In particular, hereafter we assume that Problem (1) has an optimal
solution.

Since the objective function of Problem (1) is, in general, non-convex, if the
global optimum is sought, Global-Optimization tools are required, [9, 13].

In this sense, the algorithm proposed here to solve Problem (1) is the well-
known BSSS (Big Square Small Square), with an improvement in its bounding
process.

The BSSS method is a Branch-and-Bound procedure, proposed by Hansen et
al., [7, 8], and modified by Plastria, [17], whose success is due to its simplicity
and versatility to solve planar problems.

In this case, setting as the feasible region the set S \ H given in Theorem 1
(or better, the region described in Remark 1), it starts with the construction
of a rectangle Ry known to contain an optimal solution for (1) (see Remark
2), which is dynamically divided into smaller rectangles, discarding from further
considerations those checked to be infeasible or nonpromising (if a lower bound
of ming¢cp z(x) is greater than the value of z(-) at some inspected point, R cannot
contain an optimal solution, thus can be ruled out).

We do not go into further details on the scheme of the algorithm, which is well
documented e.g. in [7, 8, 10, 17] and focus our attention on our contribution to
the basic BSSS, namely, how to obtain sharper lower bounds for min,cp z(z) for
a given rectangle R.

3.1 Bounding

In what follows, R denotes a rectangle and z*(R) is the optimal value of z(z) on

R, namely
z*(R) = min z(x). (9)

z€ER

In this subsection we propose a lower bound for z*(R), using Lagrangean relax-
ation techniques, [15], and compare the sharpness of this bound with respect to
the bound proposed in [7, 8, 17]. By using the monotonicity of the functions f,,
Ja, One obtains the following crude bound.

Proposition 1 Let zo(R) be given by

20(R) = 3 [fa(max [z = al|2) + ga(min |z — a]3)). (10)
acA

Then, zo(R) < z*(R).



Remark 3 The bound zy(R) is easily computed after computing the highest
distance (following || -||%) from each a € A to the rectangle R, and the projection
(following || - [|4.) of such points onto R.

Since the function ||-—al||% is convex, it attains its maximum on R at some vertex
of R. Hence finding max,cp ||x — al|% reduces to evaluating the four vertices of
R.

On the other hand, although calculating min,ecr ||z — a||% amounts in general to
solve a convex programme, [12], a straightforward procedure has been suggested
for the case in which | - |4 is an I, norm, see [8, 17] for details.

We now obtain a different lower bound for z*(R) and show that it is at least
as sharp as zo(R).

Since

2(R) > min > falllz —al®) + min > galllz —all?)
acA acA

> mi — al|® in ||z — all
> glelgz,fa(llw al\_)+29a(ggg||x all$)
acA acA

> z2(R),

it follows that a sharper lower bound for z*(R) can be obtained by bounding

min 3 fulllz — o) (11)
acA

The following proposition provides an equivalent formulation of (11), which allows
us use Lagrangean relaxation techniques, [15], in order to obtain a lower bound
of (11).

Proposition 2 For each a € A, let 1, be an interval of R4 containing
[min ||z — a||% , max ||z — al/%].
TER TER

Then, Problem (11) is equivalent to

min ZaeA fa(tll)
T € R,

to€l, YacA
te <llx—al® VaecA



Proof.

e Let 2™ be optimal for Problem (11). Defining t* = (||z* —a/||* )4ca, it follows
that (z*,t*) is optimal for (12), since any other feasible solution (,#) for
(12) verifies

Y fat) =) falllz® —al|2) < Y- falllZ —all2) < Y falta)-

a€EA a€A a€EA a€A

o Let (z*,t*) be optimal for (12). Then z* is optimal for (11), since for any
i feasible for (11), defining ¢ = (||# — a||* )4, one obtains

Yo falla® =al|2) <3 falty) <Y falta) = Y fa(llE —al|2).

acA acA acA acA

d

Using the Lagrangean relaxation, [15], of the constraints ¢, < || — a|| one
then obtains:

Proposition 3 For each X = (A\g)aca > 0, the value RL_()\) defined as

RL-(A) = min Y [falta) + Aata — [l — al|2)]
ta €I, aEA

= (Z min [fa(ta) + )\ata]> — max Z Aallz —al|®
acA acA

tae a
is a lower bound of the value (11).

Remark 4 Evaluating RL_(\) amounts to finding, for each a € A, the optimum
of a univariate convex optimization problem, for which, in some important cases,
closed formulae can be easily derived. See [21].

Remark 5 The bound RL_()) can be sharpened by considering all the possi-
ble vectors A > 0. In this case one needs to solve a nondifferentiable concave
maximization problem, which requires Convex Optimization techniques, [12]. As
an alternative, one may get in practice an approximation by performing a few
iterations of e.g. the subgradient method, [11], see also Subsection 3.2.

By setting, for each a € A, I, = [0, max,cg ||z — al]|%], one gets

e RE-(3) 2 RE-(0) = 3 folggle = al?). (13)

This yields the following relation between the bounds:



Proposition 4 One has zo(R) < maxy>o L(\), where L(X) is defined by

L) = RL-() + Y ga(min o — allt). (14)
acA

3.2 Convergence

In order to solve Problem (1) one can use as lower bounds any of those proposed
above.

Since z(+) is a Lipschitz function on S\ H, [20], and our proposed lower bound is
at least as sharp as the one given in [17], see Proposition 4, we obtain a similar
convergence result than in the case of BSSS with crude bound, see [17].

Theorem 4 Let ¢ be the tolerance of the algorithm. After a finite number of
iterations, the algorithm obtains an e -optimal solution of Problem (1).

4 Some numerical results

Since the convergence of the procedure is obtained even for the crude bounds
given by L(0), it is necessary to check whether, in practice, the improvement of
the bound deserves the computational effort required to optimize L.

For this reason we have performed a series of experiments, which, although do
not provide a last word, are definitely encouraging.

For simplicity we generated a series of problems following the simulation scheme
of [3]:
A is split into Jy, Jo, with

fa(t):{o, y if a€.J ga(t):{wat, if acJ

wee " if a € Jo 0, if a€Js

The feasible region is the square with sides parallel to the coordinate axis, cen-
tered at point (0.5, 0.5) and of sidelength 1.1; weights are uniformly distributed
in [0,10]. The gauge is always the euclidean norm and the accuracy is required
is e =1075.

We have implemented the BSSS algorithm with two bounding subroutines:
one with crude bounds and a second one with lagrangean bounds; the optimal
lagrangean multiplier is not calculated, but a fixed number (two) of iterations
of the subgradient method, [11], were performed. The seed considered in this
method is RL_(0) in order to improve the crude bound, see (13).



Lagrangean Splitting

bound bound

n b Htime Hiter Htime Kiter
100 10  8.0747402 1151.8  29.3716962 3180.3
100 25 14.7353905 1455.3  286.7803445 13749.2
200 25 13.7038284 979  45.9748721 3602.6
200 50 32.1839499 1749.2  346.4267223 14410.2
500 50  5.4511905 232 40.9912948 2233.2
500 100 29.2207395 724.7 256.2111184 7994.4
500 125 28.8807889 669.8 498.4821065 11328.3

Table 1: Sharpness of lagrangean bound

Both procedures run in a Convex 240, ConvexOS V 10.1.197.1. for series of ten
problems for different values of |A| = n and |J2| = p.

Table 1 shows, for different values of n and p the average CPU time (p¢ime) and
number of iterations (uer) required.

It is evident that the Lagrangean bound requires much less computational
effort than the crude bound. In passing, we observe that both CPU time and
the number of iterations increase when the percentage of points in the set Jo
increases, in that case the splitting of the objective function into two independent
parts damages the quality of the bound.

5 Conclusions

In this paper we have addressed the problem of locating a semiobnoxious facility
in the plane, in which not only transportation costs, but also the environmental
impact in population centers is important.

We show that this problem attains its optimal value, and the algorithm BSSS
of Hansen et al. can be used to find it with a prespecified accuracy.

Finally we propose an alternative bounding procedure and present some com-
parative numerical results.

Although more intensive testing, (including polygonal highly nonconvex re-
gions, for which other global optimization tools such as those in [3, 22] are not
directly applicable) is needed, it seems evident from these very first numerical
tests that the development of new bounding techniques for BSSS deserves being
studied.

10



6 Appendix

Proof of Theorem 1.
Let xp € S\ Ay and C_ > 0 verifying (4). By definition of the set A, one can
take scalars to(b) € (0,1), for all b € Ay such that

folt) > 2(wo) = D fa(Co+ b —all2) = D> 1o VE € (0,t0(b).  (15)

a€A acA
a#b
Let
B® = {zeR®: |lz—0b|" <to(b)}
= \J B
beAo

Without loss of generality, these neighborhoods may be assumed to be open and
pairwise disjoint.

Taking x € SN H, there exists exactly one b € Ay, such that ||z —b||% < to(b).
For any other a € A, a # b, it follows from the triangle inequality and the
construction of to(b) that

[z —al2 < [lz—=0b]%+b—alt
< Cflz bl + o —all
< C_to(b)+ ||b—a|
< C_+|b—al".
Hence,
2(x) =Y [falllz = al|2) + ga(llz — al|$)]
acA
> Y [falllz = al|2) + ]
acA
= follle=0l2)+ > falle —all®) + > L
a€A a€A
a#b
> follle=blI2)+ Y fa(Co+ b —all2) + > L
a€A a€A
a#b
> z(z0) — Zfa(c— +[|b—all2) - Z lo + Zfa(c— + b —all2) + Z lq
a€A acA acA acA
aFb a#b
= 2z(xg).

11



This implies both the non emptiness of S\ H (zo € S\ H) and the domination
of any point in S N H by g, thus the result holds. O
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